J.H. Los, R.C. Ouwersloot, A. Fasolino, M.I. Katsnelson, Theory of Condensed Matter, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands ![]() than for a system of nanometer size. This anomalous behavior, rooted in the theory of membranes, originates from the strong anharmonic coupling between large out-of-plane modes and in-plane modes. This coupling is in fact what stabilizes graphene as a relatively flat phase. Considering graphene with defects, such as single vacancies,or polycrystalline graphene, other length scales come into play. This not only affects the bare elastic properties but also their size dependence. I will give an overview of the situation regarding the scaling behavior of the elastic properties of defected graphene systems, providing amongst others an explanation for the recently, experimentally observed strong increase of the Young modulus of graphene with a low density of single vacancies [2]. [1] J.H. Los, A. Fasolino, and M. I. Katsnelson, Phys. Rev. Lett. 116, 015901 (2016). [2] G. Lopez-Polin, C. Gomez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Perez-Murano, and Julio Gomez-Herrero, Nature Physics, 26-31 (2015). ![]() |