Home‎ > ‎

Rainer Hillenbrand: Nanophotonics with phonon polaritons in 2D materials

posted 22 Apr 2021, 10:29 by Peter Boggild   [ updated 26 Apr 2021, 09:36 ]

Rainer Hillenbrand (2021 - April 22 - 11:00 CET, GMT+1)                

University of the Basque Country

Phonon polaritons - light coupled to optical lattice vibrations - in 2D materials exhibit ultra-short wavelengths, long lifetimes and strong field confinement, which allow for manipulating infrared light at the nanometer scale. Here, we discuss real-space nanoimaging studies of ultra-confined infrared phonon polaritons, essentially in thin hexagonal boron nitride layers and nanostructures, using scattering-type scanning near-field optical microscopy (s-SNOM) and nanoscale infrared Fourier transform (nano-FTIR) spectroscopy. We visualize and analyze phonon polaritons in nanoscale waveguides and resonators, as well as propagation with anomalous wavefronts when the (effective) in-plane permittivity of the 2D material is strongly anisotropic. Particularly, we will demonstrate that phonon polaritons can be utilized to achieve vibrational strong coupling with nanoscale amounts of organic molecules.

Rainer Hillenbrand is Ikerbasque Research Professor and Nanooptics Group Leader at the nanoscience research center CIC nanoGUNE BRTA in San Sebastian (Basque Country, Spain), and a Joint Professor at the University of the Basque Country. He is also co-founder of the company neaspec GmbH (Germany), which develops and manufactures near-field optical microscopes. From 1998 to 2007 he worked at the Max-Planck-Institute for Biochemistry (Martinsried, Germany), where he led the Nano-Photonics Research Group from 2003 to 2007. He obtained his PhD degree in physics from the Technical University of Munich in 2001. Hillenbrand pioneered the development of infrared near-field nanoscopy and nanospectroscopy, and its applications in nanophotonics, polaritonics, materials sciences and soft matter sciences. In 2014 he received the Ludwig-Genzel-Price “for the design and development of infrared near-field spectroscopy and the application of the novel spectroscopy method in different fields of natural sciences”.

YouTube Video